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Upper bounds on the torque are derived for a fluid that is contained between 
two concentric rotating cylinders. Absolute upper bounds are obtained byrequir- 
ing that the fluid satisfy the boundary conditions and the dissipation integral. 
Improved bounds are then found by requiring that the fluid satisfy continuity 
conditions. These bounds are in qualitative agreement with the data in that 
they reflect the asymptotic parameter dependence in the range of experimental 
data. 

1. Introduction 
Non-linearities in the Navier-Stokes equations of motion present insurmount- 

able obstacles to any direct approach to statistically steady turbulent flows. 
Since exact solutions t o  the Navier-Stokes equations are unattainable for such 
flows, it is therefore reasonable to seek bounds on the solutions. 

Bounding procedures involve the formulation of variational problems, and 
the stability bounds obtained by Orr (1907), Serrin (1959) and Joseph (1966), 
for example, illustrate the utility of the variational approach. Upper bounds on 
the asymptotic behaviour of turbulent flows were first obtained by Howard 
(1963), who placed an upper bound on the heat transport in turbulent convection. 
Busse (1968, private communication) applied Howard's method to turbulent 
shear flow and then extended the method to include solutions consisting of many 
wave-numbers. 

The integral constraints that Howard used consisted of the dissipation integral 
and the entropy-flux integral. In  this paper we use Howard's method to place 
upper bounds on the torque in cylindrical Couette flow. In  a forthcoming paper 
it will be shown that a more restrictive set of integral constraints leads to im- 
proved bounds. Although a sufficiently large number of constraints should 
provide a very good bound, the greater the number of constraints that are im- 
posed the more difficult the problem becomes. Therefore, the first few terms in a 
sequence of integral constraints should give a reasonably accurate description 
of the flow in order for the method to be of value. 

The torque that is transmitted to the fluid by the rotation of the concentric 
cylinders is a measurable quantity, and may be shown to be the only quantity 
that is independent of the axial direction. It is therefore reasonable to seek an 
upper bound on the torque. In  addition, maximum torque corresponds to maxi- 
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mum dissipation, and it has been suggested by Coles (1965), for example, that 
the fluid would attempt to reach a state in which the dissipation was a maximum. 

2. The equations 
We consider an incompressible, homogeneous, and neutrally stratified fluid 

that is contained between two concentric cylinders of infinite axial extent. The 
inner cylinder Ri and the outer cylinder R, rotate with time-independent angular 
velocities Qi and a,, respectively. The velocity is separated into an average in 
the circumferential and axial directions and a departure from this average. 
Perturbation velocity components are indicated by subscripted lower-case letters, 
where the subscript 1 denotes the circumferential direction, the subscript 2 
denotes the axial direction, and the subscript 3 denotes the radial direction. 
The boundary conditions on the velocity components are 

U = RoQo, 

It will be convenient to use a bar to denote an average in the circumferential 
and axial directions, and a set of brackets to denote an average over the entire 
volume. The assumption is made that time and space averages may be com- 
muted, so that the time rate of change of a space average is zero. 

We shall take as our basic set of equations 

u,v2u, + u2v2u2 + u,v2u, - 

and 

where the following definitions have been made 

- (Rg- RZ,) G N =  4nR:REv( Qo - Qt) ’ 

Now the first terms on the right side of the energy equation (1) may be written as 
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so that their sum is positive definite. The left side of (1) is negative definite, 
giving the result that 

The quantity N may be interpreted as the equivalent of a Nusselt number; 
that is, it represents the ratio of the total torque to the laminar torque. Thus, 
the torque is always greater than or equal to its laminar value. For a given set 
of external conditions we then have an absolute lower bound on the torque. 

3. Asymptotic upper bounds 
Upper bounds on the torque were obtained by methods similar to those used 

by Howard (1963). Modifications of Howard's analysis were necessary because 
of the difference in geometry and the appearance of additional external para- 
meters. An upper bound on the torque corresponding to Howard's first example 
in which the continuity condition was not imposed is given by 

In the narrow gap limit (4) states that the drag coefficient is a constant, in- 
dependent of the Reynolds number. The physical picture to which this would 
correspond is a flow over a rough boundary. 

The upper bound given by (4), while not a particularly good approximation 
to the torques that have been observed experimentally, does constitute a 
formal upper bound for all flows that satisfy the stated conditions. If one im- 
poses the additional condition that V . v = 0 and considers the case in which all 
perturbation velocities have a single wave-number periodicity in the axial 
direction, one obtains the result 

In  order to compare the asymptotic relation (5) with the experimental data, 
it  will be convenient to define a Reynolds number 

Equation (5) may then be written (for ,u = 0) 

where (7) 

Surprisingly enough, the power laws for cylindrical Couette flow, when 
properly interpreted, turn out to be identical to those found by Howard. 
Moreover, the appearance of additional parameters, namely ,u and 7, gives 
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the problem of cylindrical Couette flow a richer structure than the problem 
Howard studied, 

The 8 power law derived by Howard becomes a $ power law in this problem 
(since the Rayleigh number is replaced by the square of a Reynolds number). 
In  the narrow gap limit, (6) corresponds to a drag coefficient that is proportional 
to  R-a. This power law is characteristic of the Blasius regime associated with 
flow in a channel. Figure 1 contains a plot of P(7) that attains a maximum value 
at approximately 7 = 0-81. The asymptotic value of N for 7 = +, for example, 
is less than that for 7 = 0.85. This asymptotic behaviour also occurs in the data 
for R greater than R,. Even though the critical Reynolds number for 7 = 4 
is less than that for 7 = 0.85, Donnelly’s [ 1958) torque data for 7 = 4 cuts through 

0 0.2 0.4 0.6 0.8 1.0 

T 
FIGURE 1. Asymptotic constant of proportionality. 

the data of Wendt (1933) for y = 0.68 and 0.85. Furthermore, the increase in 
torque with Reynolds number for 7 = + is considerably smaller than that ob- 
served for larger values of 7. 

The question of whether or not ( 6 )  is also an upper bound for a multi-alpha 
solution has been answered by Busse (private communication). Busse’s investi- 
gation was oriented toward the study of Poiseuille flow and plane Couette flow. 
Nevertheless, his methodology is directly applicable to the problem considered 
in this paper. 

The boundary layer for the single alpha solution may be thought of as having 
a boundary layer that is scaled by a second wave-number. This boundary layer 
in turn has a boundary layer that is scaled by a third wave-number, ad injinitum. 
Busse found that the ratio of the length scales for the first and second modes was 
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of the order 30. For a larger number of modes the ratio between successive scales 
decreases so that, for example, the length ratio between the sixth and seventh 
modes is approximately 2 .  By applying Busse's procedure to the problem at 
hand, one finds that for values of R much beyond lo4, it will be necessary to in- 
clude more than a single wave-number. 

4. Critical and near critical torques 

to the dissipation integral (1) and the continuity equation are as follows: 
The Euler-Lagrange equations obtained by maximizing the torque subject 

ar 
v2u --, 

2 -  a2 

where I? is an unspecified Lagrange multiplier. It is important to notice that 
(8) to (10) are separable. We then consider a simple separation in the axial 
direction in which all disturbances are characterized by a single wave-number. 

The optimal equations may then be written as 

d I d  
where D =  - and D ,  = - - dr r dr' 

At the critical point, (1 1) and (1  2) reduce to 

Tu, cr (DD, - az)ul = -- - 
2 r2' 

aTulu 
2r2 

(DD, - a2)u3 = ___. 

The critical value of T2 is given by 

4{ - ul(DD, - a2)ul){u,(DD, - ~4%~) 
u2a2{u1u3/ra)2 T: = min 

Critical values of T 2  for the specific cases 7 = 0.5 and 0.75 have been obtained 
by expanding the velocity components in a series of Bessel functions, and then 
integrating over the volume to obtain a set of algebraic equations that are linear 
in the expansion coefficients. Standard eigenvalue methods were then used to 
find the critical value of T2 for different values of the wave-number, a, thereby 
leading to a minimum value for T2. 
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Equations (1 1) and (12) were used to obtain the initial finite amplitude de- 
pendence of N on Reynolds number. The procedure for obtaining N was similar 
to that used in the stability problem. 

Numerical calculations of the torque for super critical Reynolds numbers 
were not carried out beyond N = 1.45. For N greater than 1-45 the numerical 
iteration scheme would not converge. In  an effort to bridge the gap between 
the numerical calculations and the asymptotic predictions at high Reynolds 
numbers, thenumerical calculations were extended by using the shape assumption. 

Using a method first suggested by Malkus & Veronis (1958), Stuart (1958) 
and later Davey (1962) determined a relationship between torque and Taylor 
number for super critical values of the Taylor number. They assumed that to a 
first approximation the perturbation velocity components for super critical 
Taylor numbers may be given by a function whose radial dependence is that of 
the critical eigenfunction. 

(NJ) 
Log,, R 

FIGURE 2. Upper bounds on the torque. (a) 71 = 0.50; ( b )  9 = 0.75. 

The predicted curves were in good agreement with the data near the critical 
Taylor number, but departed from the data for Taylor numbers that exceeded 
critical by about 10 yo. The aggreement between theory and experiment over 
such a range of Taylor numbers is now thought to be fortuitous, and the shape 
assumption is not regarded very highly at the present time. 

The torque curves for 7 = 0.5 and 0-75 are shown in figure 2. The lower solid 
lines represent the numerical calculations. The dotted segments represent the 
results of the shape assumption calculations. The upper solid lines represent the 
asymptotic predictions, and the dashed sections represent a smoothed transition 
between the shape assumption curve and the asymptotic predictions. 

5. Comparison with previous data 
For values of N greater than unity, plots of N us. R for different values of 7 

reveal an interesting phenomenon (see figure 3). Donnelly’s curve for 7 = 0.5 
has a much smaller slope than the other curves, and cuts across them. In fact, 
the strong dissimilarity between Donnelly’s data and that of Wendt and Taylor 
might lead one to discard the results of Donnelly’s experiment. 
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There are several reasons, however, for believing that this strange result is 
characteristic of large gap spacings. The reasona for believing this are fourfold: 
(i) Wendt’s data for 7 = 0.68 cut across his own data for 7 = 0.85; (ii) Donnelly’s 
data is in agreement with Davey’s (1962) finite amplitude predictions; (iii) the 
asymptotic value of N from (6) is significantly lower at 7 = 4 than at 7 = 0.75, 
say; (iv) the numerical calculations for 7 = + and 7 = 0.75 indicate a similar 
crossing-over . 

Taylor’s (1936) data have been included in order to provide a check on the 
accuracy of Wendt’s data (i.e. Taylor’s curve for 7 = 0.852) and also to indicate 
the position of the curves for smaller gaps. The slopes of Taylor’s curves for log N 
close to zero should be considered only as rough approximation, however, due to 
the small number of data points that were available. 

An absolute upper bound on N is given by (4). This result has been plotted in 
figure 4 for several values of 7. Equation (4) results in torques that are one or 
two orders of magnitude larger than those determined experimentally. 

(4 (4 (4 (4 
Log,, R 

FIGURE 3. Super critical torque curves. (a) Donnelly (1958), 0-5; (b) Wendt (1933), 0.68; 
(c) Wendt (1933), 0.85; (d) Wendt (1933), 0-94; (e) Taylor (1936), 0.965. 

An upper bound on the torque for a disturbance characterized by a single wave- 
number is given by (6). This result has also been incorporated into figure 4, 
and is seen to provide a significant improvement in that the torques now exceed 
the experimental values by a t  most a factor of three or four. 

In  addition to providing an improved upper bound, the asymptotic predic- 
tions reflect the reversal of the N ( R )  curves with 7. The asymptotic curve for 
7 = 0.5 lies under the 7 = 0.68 curve by approximately the same amount as for 
the experimental curves. Furthermore, the asymptotic slopes are similar to 
the experimental slopes in the range where the theory is valid. As was mentioned 
in $4, multi-alpha solutions will have to be considered for Reynolds numbers 
greater than about 1 04. This phenomenon is apparently reflected in Taylor’s 
narrow gap curves (i.e. 7 = 0.965 and 7 = 0-973) where the slope approaches that 
given by (4). 

In  the limit of very large Reynolds numbers, N apparently becomes directly 
proportional to the Reynolds number, in agreement with Busse’s result that in 
the asymptotic limit the drag coefficient becomes inversely proportional to log R. 

It will be shown in a forthcoming paper that for the case p = 0, the critical 
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value of T2 (or equivalently R2) obtained from the total dissipation integral 
should agree with that found from the separate components of the dissipation 
integral at a value of 7 approximately equal to 0-5. The results of R = 67.2 
and a = 6.3 when the values of p = 0 and 7 = 0.5 are inserted into (13) and (14) 
are within a few percent of the values quoted by Chandrasekhar (1958) and 
others. However, for values of p different from zero the discrepancies become 
large, particularly for large negative values of p. For p = 0 and 7 = 0.75 the 
computed Reynolds number is 73-2, compared with the value of 85.7 from 
Sparrow, Munro & Jonsson (1964). As 7 approaches unity, the actual critical 

W(2) (5) (6)(7) (8) 
2.0 2.5 3.0 3.5 

Log,, R 
FIQURE 4. Experimental torque data and predicted upper bounds. (1) Donnelly (1958), 
7 = 0.5, (2) Wendt (1933), 7 = 0.68; (3) Wendt (1933), 7 = 0.85; (4) Taylor (1936), 
7 = 0.852; (5) Wendt (1933), 7 = 0.935; (6) Taylor (1936), 7 = 0.960; (7) Donnelly 
(1958), 7 = 0.95; (8) Taylor (1936), 7 = 0.9’73. 

values continue to increase, but the values from (13) and (14) approach the 
limiting value 241708. (In the narrow gap limit, (13) and (14) become identical 
in form to the equations for the Rayleigh problem with (R/2)2 assuming the 
role of a Rayleigh number.) 

6. Concluding remarks 
An upper bound on the torque has been derived subject to the conditions that 

the fluid satisfy the boundary conditions and the dissipation integral. Reduc- 
tions in the bound were obtained by imposing the continuity equation. 

The failure of the Euler-Lagrange equations (11) and (12) to adequately 
represent the Taylor mechanism at the critical point is due to the particular 
integral constraints that were used. The Taylor mechanism is an important 
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energy source for individual fluid elements but cannot change the energy of the 
fluid as a whole. This failure can be overcome, however, by using the separate 
dissipation integrals as constraints. The use of additional integral constraints 
will be discussed in a forthcoming paper. 

I am grateful to Professor W. V. R. Malkus for suggesting this study, for his 
assistance in coping with the many obstacles that were encountered, and for 
his comments and suggestions in the preparation of this report. I would also 
like to thank Dr F. Busse and Professor A. C. Newell for the many informative 
discussions. The numerical computations were performed at  the UCLA computing 
centre. 
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